Fuel Tank Safety Enhancements of Large Transport Airplanes

57th Annual International Air Safety Seminar
November 15-18, 2004
Shanghai, China

Daniel I. Cheney
Mgr, Safety Programs
Transport Airplane Directorate, FAA
Overview

- Brief History
- SFAR 88 Ignition Prevention
- Flammability Reduction
 - Balanced Approach
- Summary
- Implementation Plan
Brief History

- Despite various efforts to reduce the risk of fuel tank explosions through other means, the fundamental safety approach remains preventing the presence of ignition.
Brief History

- Since the 1960’s, there have been FIVE key accidents involving fuel tank explosions which we now believe call into question this fundamental safety strategy applied to fuel systems of large commercial airplanes.
Lightning Strikes - 2 Key Accidents (B707 - 1963, B747 - 1976)

Commercial Airplane Lightning Strike During Takeoff from an Airport in Japan
707 Elkton MD (1963)

Pan Am B707-100; N709PA
707 Elkton MD (December 8, 1963)

- While holding at 5,000 feet, left wing struck by lightning
 - Left wing exploded
 - In-flight break-up, 81 killed
- Airplane fueled with mixture of Jet A and JP-4 fuels
707 Elkton MD (1963)

Portion of fuselage of Pan Am Flight #214 in cornfield near Elkton, MD
747 Madrid (May 9, 1976)

- Airplane’s left wing was struck by lightning while descending to 5000 ft
 - Left wing exploded
 - In-flight break-up, 17 killed
- Airplane fueled with JP-4 fuel
747 Madrid (May 9, 1976)

Madrid, B-747, 5-8104
Left Wing Reconstruction
Non-Lightning Caused Tank Explosions – 3 Key Accidents

Frayed In-Tank Wire
737 Manila (May 11, 1990)

- While pushing back from gate, empty center fuel tank exploded
 - Airplane destroyed by fire
 - 8 killed
- Airplane had been fueled with Jet A fuel
737 Manila (1990)

Philippine Air Lines, B737-300; EI-BZG
While climbing through 13,000 feet, empty center tank exploded.
- In-flight break-up of airplane
- 230 killed
- Airplane had been fueled with Jet A

TWA (Flight 800), B747-100; N93119
737 Bangkok (March 3, 2001)

- While parked at gate, empty center tank exploded
 - Airplane destroyed by fire
 - 1 flight attendant killed
- Airplane had been fueled with Jet A fuel
737 Bangkok (2001)

Thai Airways, B737-400; HS-TDC
Ignition Sources for Key Accidents
Never Identified

- Massive resources expended during Five investigations
 - Elkton 707 - 1963
 - Madrid 747 - 1976
 - Manila 737 - 1990
 - New York 747 - 1996
 - Bangkok 737 - 2001

- Exact source of ignition never determined
 - Corrective actions based on most likely scenarios
Ignition Sources for Key Accidents
Never Identified

- All FIVE accidents involved explosions of what are now being referred to as “High Flammability” fuel tanks
 - >7% flammability exposure on a worldwide basis

- Highlights uncertain nature of ignition source prevention strategy
 - Emphasizes need for an independent layer of protection
 - “Balanced Approach” needed
Fuel Tank Flammability Exposure
Typical

- Main Tanks 2-4%
- Tail Tanks 2-4%
- Body Tanks
 - Pressurized <5%
 - Un-pressurized >20%
- Center Wing Tank with Adjacent Pack Bays 15-30%, (Boeing, Airbus)
- Center Wing Tanks without Pack Bays 4-7%
Fuel Types and Tank Locations have Very Different Service Histories

- A wing tank fueled with JP-4 has approximately the same world wide exposure to flammability as an empty heated center tank with Jet A.
- In general, wing tanks and unheated center wing tanks fueled with Jet A have exhibited an acceptable service history.
- Wing tanks fueled with JP-4 and empty heated center tanks fueled with Jet A have not had an acceptable service history.
Comparison of Flammability Envelopes JP 4 and Jet A
Flammability Envelope

1 Joule Spark, Conventional Aluminum Transport, Air Conditioning Systems Located Underneath Center Wing Tank (CWT)
Brief History - Summary

- TWA 800 brought a realization that some tanks could be flammable for a large portion of their operational time.
- U.S. NTSB “Most Wanted List”: Flammability Reduction
 - “preclude the operation of transport category airplanes with explosive fuel-air mixtures in the fuel tank”
 - TWA 800 recommendation
SFAR 88 Ignition Prevention

Efforts to resolve TWA 800 led the FAA to conclude that:

1. Many current airplanes had similar short comings in their ignition prevention approaches
2. An additional independent layer of protection is needed to “Back-Up” the ignition prevention strategy
SFAR 88 Ignition Prevention

- In response to these findings, the FAA issued Special Federal Aviation Regulation No. 88 in June of 2001.
 - Re-examine existing commercial fleet related to ignition prevention
 - Implement safety enhancements related to the findings of these examinations
Fuel Tank Safety History

(FIVE Key Accidents)

<table>
<thead>
<tr>
<th>5 Key Accidents</th>
<th>1960’s-1990</th>
<th>1990-1999</th>
<th>2000-Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>707 Elkton MD 747 Madrid 737 Manila 747 New York 737 Bangkok</td>
<td>707 Elkton MD (Lighting) 737 Manila (Not Lighting) 737 Bangkok (Not Lighting)</td>
<td>707 Elkton MD (Lighting) 737 Manila (Not Lighting) 737 Bangkok (Not Lighting)</td>
<td>707 Elkton MD (Lighting) 737 Manila (Not Lighting) 737 Bangkok (Not Lighting)</td>
</tr>
</tbody>
</table>

Safety Approach:

Ignition Sources

- **Ignition**
- **Fuel**
- **Air**
- **Flammability**

1960’s-1990
- Prevent ignition sources (improvements to affected model after accident)
- Whole Fleet Solution

1990-1999
- Re-examine design and maintenance to better prevent ignition sources (SFAR 88)
- FAA research led to inerting developments.
- Industry (ARAC) deemed it impractical.

2000-Present
- Recognition that our best efforts may not be adequate to prevent all explosions
- FAA Simplified system developed.
- Recognized that inerting is practical, and may be needed to achieve balanced solution

- Some R&D. Not found to be practical. No requirements established.
- FAA research led to inerting developments. Industry (ARAC) deemed it impractical.
SFAR 88 Lessons Learned

- Goal of SFAR 88 was to preclude ignition sources
 - Safety Assessments were very valuable
- Revealed unexpected ignition sources
- Difficulty in identifying all ignition sources
 - Number of previously unknown failures found
 - Continuing threat from still unknown failures
- Unrealistic to expect we can eliminate all ignition sources
- Must consider flammability reduction of high flammability tanks as an integral part of system safety
The Fire Triangle

- Ignition
- Oxygen
- Fuel Vapor
- Ignition Prevention
- Flammability Reduction
SFAR 88 Findings

- Lightning
- External & Internal Wiring
- Fuel Pumps
- Motor Operated Valves
- Recurring Maintenance
- Flight Manual Procedures
- FQIS
Service Experience

- ARC TO LOWER WING SKIN
- ARC THROUGH PUMP HOUSING
- ARC THROUGH CONDUIT
- Fuel Pump Internal Damage/Overheat
In 1998 and again in 2001, the FAA tasked the U.S. Aviation Rulemaking and Advisory Committee (ARAC) to explore ways to reduce flammability in fuel tank systems.

- Direct response to TWA 800
Flammability Reduction

- While both ARAC committees concluded that flammability reduction efforts would be valuable—existing technology was considered not practical for commercial aviation.
 - Weight – too heavy
 - Cost – too expensive
 - Reliability – too low
- FAA continued technology R&D
Fuel Tank Safety - Recent History

1996
Flammability Reduction
Ignition Prevention

ARAC 1
Inerting Studies Started

ARAC 2

FAA FRS Demonstrator

ARAC 3

FRS Implementation

TWA 800
NTSB TWA 800 Hearing

THAI 737
SFAR 88 Rule

SFAR 88 Reviews

1996
TWA 800
Ignition Changes Available First AD’s released

2004 +
Flammability Reduction

- Main “Enablers” which made technology “Breakthrough” possible:
 1. Membrane performance at lower ΔP
 2. O_2 Concentration (9% vs. 12%)
 3. Use of simple system OK (single string)

- FAA focused testing in these areas
Performance analysis and subsequent testing showed Air Separation Module technology would work at low pressures, 10 to 40 psig versus 50 to 100 psig used commercially.
Breakthrough - O_2 Concentration

- Testing demonstrated that higher O_2 levels provided adequate protection
 - Adequate inverting obtained on the ground with approximately 12% O_2
 - Previous 9% O_2 levels linked to military combat threats
 - Less Nitrogen needed at altitude
 - 15.5% Oxygen adequate at 40000ft
Nitrogen Inerting Test Results

Sea-Level Nitrogen Inerting Test Results

Source: Boeing Literature Review, References quoted on Chart
Breakthrough - Simple System

- **Existing Cooling Inlet**
 - Shut off Valve
 - Heat Exchanger
 - Existing Bleed Line
 - Temp control valve
 - Filter
 - Heater
 - Cooling Air, Flow reverses on Ground
 - Overboard Exit
 - Waste Flow (O2 rich)

- **ASM**
- **Center Wing Tank**
- **FAA Simple Inerting System**
 - Check/Shutoff Valve
 - NEA Flow
 - High and Low Flow Orifices (In common valve)
 - Low flow, High Purity NEA for Ground, Climb and Cruise, High Flow, Low Purity NEA for Descent
 - Overboard Exit

NEA Flow

Low flow, High Purity NEA for Ground, Climb and Cruise, High Flow, Low Purity NEA for Descent
FAA Inerting System on 747 SP
FAA Inerting Installation on A320
Flight Testing Accomplished

- FAA R&D Testing (747SP, 737)
- Boeing 747-400 Flight Test
 - Engineering and Certification Data
- FAA/Airbus A320 Flight Test
 - FAA concept inerting system installed in A320 cargo compartment
 - Airbus gained familiarity with design concept and system performance
- Boeing 737 & 747 Certification Testing
- FAA/NASA 747 Flight Test
 - Initial flights performed in December 2003
Balanced Approach to Fuel Tank Safety

- FAA R&D has shown that Inerting is practical
- SFAR 88 addressed ignition prevention only
 - Inerting was not seen as practical at the time SFAR 88 was issued
- Balanced Approach - *Now Possible*
 - Combine ignition prevention & flammability reduction into a single solution
Ignition Prevention Alone
(Not Balanced Approach)

Attempting to “plug” all the holes in one layer exceeds what is realistically possible.

For over 40 years, we have been trying to prevent tank explosions by plugging all the holes in this layer, which is nearly impossible.

HAZARD

Ignition Prevention Layer
Holes due to:
- Design issues
- Aging systems
- Improper Maintenance,
 Rework, modifications, etc
- Unknown unknowns

Flammability Layer
(High Flam Tank shown)
Hole due to:
- High exposure to flammable vapors
Fault Tree: Current Fuel Tank System
Unbalanced Fault Tree

Tank Explosion

‘AND’ Gate

Ignition Source

‘OR’ Gate

Ullage Flammable

FQIS shorts
Pump Arc
Pump FOD
Pump Burn thru
Lightning (many)

Level Sensors
Densitometer
Valves
Electrostatic { etc. }
Balanced Approach with Flammability Reduction

Flammability Reduction significantly reduces hole size in flammability layer, virtually eliminating future accidents.

Ignition Prevention Layer
- Some holes eliminated (e.g. design changes to preclude single failures)
- Other holes reduced in size (human factors/ maintenance issues, unknowns, etc.)

Flammability Layer
- Reducing flammability exposure significantly reduces holes (flammability reduction)
- Small holes remain due to system performance, dispatch relief, system reliability, etc.

ACCIDENT PREVENTED!
On Feb 17th 2004, The FAA Administrator, Marion C. Blakey, announced that the FAA was proceeding with a Notice of Proposed Rule Making (NPRM) to require reduction of flammability in high flammability tanks of U.S. commercial jet transports.
Summary

- Flammability exposure is a major factor in fuel tank explosion risk
 - Simple Inerting System is now practical
- Ignition Prevention still major protection strategy
- Balanced Approach of Ignition Prevention and Reduced Flammability can provide a substantial improvement in fuel tank safety
- FAA is moving forward to implement a reduced flammability strategy to complement the ignition prevention strategy
Implementation Plans

- Propose production “cut-in” of flammability reduction means (FRM) on high flammability tanks (Boeing & Airbus CWTs)
- Propose retrofit of FRM on existing fleet with high flammability tanks (Boeing and Airbus CWTs)
- Propose revision to FAR 25 to include flammability limits
Thank You for Your Attention